Copied to
clipboard

G = C23.552C24order 128 = 27

269th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.552C24, C24.376C23, C22.2432- (1+4), C22.3272+ (1+4), C23.72(C4○D4), (C2×C42).84C22, (C22×C4).162C23, (C23×C4).145C22, C23.8Q8.43C2, C23.Q8.22C2, C23.11D4.30C2, C23.81C2368C2, C23.83C2369C2, C2.50(C22.32C24), C23.63C23119C2, C23.65C23108C2, C2.C42.269C22, C2.59(C22.36C24), C2.33(C22.35C24), C2.49(C22.33C24), C2.104(C23.36C23), (C4×C22⋊C4).73C2, (C2×C4).177(C4○D4), (C2×C4⋊C4).377C22, C22.424(C2×C4○D4), (C2×C22⋊C4).473C22, SmallGroup(128,1384)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.552C24
C1C2C22C23C22×C4C2×C4⋊C4C23.8Q8 — C23.552C24
C1C23 — C23.552C24
C1C23 — C23.552C24
C1C23 — C23.552C24

Subgroups: 372 in 196 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×2], C4 [×16], C22 [×7], C22 [×10], C2×C4 [×4], C2×C4 [×44], C23, C23 [×2], C23 [×6], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×14], C22×C4 [×14], C22×C4 [×4], C24, C2.C42 [×16], C2×C42 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4 [×10], C23×C4, C4×C22⋊C4, C23.8Q8 [×2], C23.63C23 [×3], C23.65C23, C23.Q8, C23.11D4 [×3], C23.81C23, C23.83C23 [×3], C23.552C24

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ (1+4) [×2], 2- (1+4) [×2], C23.36C23, C22.32C24, C22.33C24 [×3], C22.35C24, C22.36C24, C23.552C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=1, d2=c, f2=a, g2=b, ab=ba, ac=ca, ede=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Smallest permutation representation
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 10)(4 12)(5 40)(6 8)(7 38)(14 42)(16 44)(17 19)(18 48)(20 46)(22 50)(24 52)(26 54)(28 56)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(45 47)(57 59)(61 63)
(1 17 9 45)(2 32 10 60)(3 19 11 47)(4 30 12 58)(5 54 38 26)(6 41 39 13)(7 56 40 28)(8 43 37 15)(14 64 42 34)(16 62 44 36)(18 24 46 52)(20 22 48 50)(21 57 49 29)(23 59 51 31)(25 61 53 35)(27 63 55 33)
(1 55 51 41)(2 56 52 42)(3 53 49 43)(4 54 50 44)(5 20 62 30)(6 17 63 31)(7 18 64 32)(8 19 61 29)(9 27 23 13)(10 28 24 14)(11 25 21 15)(12 26 22 16)(33 59 39 45)(34 60 40 46)(35 57 37 47)(36 58 38 48)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,40)(6,8)(7,38)(14,42)(16,44)(17,19)(18,48)(20,46)(22,50)(24,52)(26,54)(28,56)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(45,47)(57,59)(61,63), (1,17,9,45)(2,32,10,60)(3,19,11,47)(4,30,12,58)(5,54,38,26)(6,41,39,13)(7,56,40,28)(8,43,37,15)(14,64,42,34)(16,62,44,36)(18,24,46,52)(20,22,48,50)(21,57,49,29)(23,59,51,31)(25,61,53,35)(27,63,55,33), (1,55,51,41)(2,56,52,42)(3,53,49,43)(4,54,50,44)(5,20,62,30)(6,17,63,31)(7,18,64,32)(8,19,61,29)(9,27,23,13)(10,28,24,14)(11,25,21,15)(12,26,22,16)(33,59,39,45)(34,60,40,46)(35,57,37,47)(36,58,38,48)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,40)(6,8)(7,38)(14,42)(16,44)(17,19)(18,48)(20,46)(22,50)(24,52)(26,54)(28,56)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(45,47)(57,59)(61,63), (1,17,9,45)(2,32,10,60)(3,19,11,47)(4,30,12,58)(5,54,38,26)(6,41,39,13)(7,56,40,28)(8,43,37,15)(14,64,42,34)(16,62,44,36)(18,24,46,52)(20,22,48,50)(21,57,49,29)(23,59,51,31)(25,61,53,35)(27,63,55,33), (1,55,51,41)(2,56,52,42)(3,53,49,43)(4,54,50,44)(5,20,62,30)(6,17,63,31)(7,18,64,32)(8,19,61,29)(9,27,23,13)(10,28,24,14)(11,25,21,15)(12,26,22,16)(33,59,39,45)(34,60,40,46)(35,57,37,47)(36,58,38,48) );

G=PermutationGroup([(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,10),(4,12),(5,40),(6,8),(7,38),(14,42),(16,44),(17,19),(18,48),(20,46),(22,50),(24,52),(26,54),(28,56),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(45,47),(57,59),(61,63)], [(1,17,9,45),(2,32,10,60),(3,19,11,47),(4,30,12,58),(5,54,38,26),(6,41,39,13),(7,56,40,28),(8,43,37,15),(14,64,42,34),(16,62,44,36),(18,24,46,52),(20,22,48,50),(21,57,49,29),(23,59,51,31),(25,61,53,35),(27,63,55,33)], [(1,55,51,41),(2,56,52,42),(3,53,49,43),(4,54,50,44),(5,20,62,30),(6,17,63,31),(7,18,64,32),(8,19,61,29),(9,27,23,13),(10,28,24,14),(11,25,21,15),(12,26,22,16),(33,59,39,45),(34,60,40,46),(35,57,37,47),(36,58,38,48)])

Matrix representation G ⊆ GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
10000000
01000000
00400000
00040000
00001000
00000100
00000010
00000001
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
20000000
02000000
00030000
00200000
00000010
00000001
00001000
00000100
,
10000000
04000000
00400000
00040000
00001000
00000100
00000040
00000004
,
01000000
10000000
00040000
00400000
00000400
00001000
00000004
00000010
,
40000000
04000000
00200000
00020000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4N4O···4V
order12···22244444···44···4
size11···14422224···48···8

32 irreducible representations

dim1111111112244
type++++++++++-
imageC1C2C2C2C2C2C2C2C2C4○D4C4○D42+ (1+4)2- (1+4)
kernelC23.552C24C4×C22⋊C4C23.8Q8C23.63C23C23.65C23C23.Q8C23.11D4C23.81C23C23.83C23C2×C4C23C22C22
# reps1123113138422

In GAP, Magma, Sage, TeX

C_2^3._{552}C_2^4
% in TeX

G:=Group("C2^3.552C2^4");
// GroupNames label

G:=SmallGroup(128,1384);
// by ID

G=gap.SmallGroup(128,1384);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,723,100,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=1,d^2=c,f^2=a,g^2=b,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽